
Software engineering methods and algorithms for a
CAN Bus based battery management system with
data recording functionality used for AI training

Rene Santeler, and Thomas Gadner (supervisor)

Abstract—In this thesis, methods, components, and implemen-
tations from professional embedded software engineering are
applied to the development of a battery management system
(BMS). Modern society relies heavily on essential safety-critical
systems. A BMS is important to ensure the safe and reliable
execution of these systems.

Therefore, the primary goal is to develop a robust BMS
platform that is capable of supporting the integration of ad-
vanced algorithms in the future. Additionally, the BMS is
based on a comprehensive theoretical framework, detailing the
methodologies, principles, and tools essential for the effective
execution of real-time, resource-limited development projects.
Emphasis is placed on the design, implementation, and testing
of microcontroller-based software using the C programming
language. The crucial components of the BMS are designed to
enhance battery safety, performance, and longevity, thereby im-
proving efficiency and reducing waste. The developed prototype
features a non-blocking loop design, various safety mechanisms
and hot-swap capability. Moreover, an effective balancing and
battery state algorithm is included, along with an adapted data
recording feature to generate real training data for future AI
algorithm development. A user interface and an extensive CAN-
based external communication interface are utilized for system
control and data access.

All described components have been implemented and tested
successfully. The positive results underscore the robustness and
reliability of the developed BMS. The outcomes of this paper
provide valuable insights into the practical application of em-
bedded software engineering principles and lay the foundation
for future advancements in battery management technology.

Index Terms—battery management system, embedded system
development, hot-swap, CAN, AI training data recording, diag-
nostic, cell balancing

I. INTRODUCTION

THE development of embedded software stands at the core
of numerous modern safety-critical applications, ranging

from automotive systems to portable electronics. Battery man-
agement systems (BMS) are particularly important for safe-
guarding the functionality and longevity of devices that depend
on battery power. As our reliance on these systems grows,
the safety, sustainability and performance of such systems
become increasingly important, which makes the adoption of
structured and professional embedded software development
methodologies essential. This paper documents the application
of professional embedded software engineering methods in the
development of a BMS. [1] [2]

Rene Santeler studies at the MCI, e-mail: sr4666@mci4me.at

II. PREVIOUS WORK

A. Hardware

The hardware platform used for this project was previously
developed by the Infineon AG. Figure 1 and 2 show the
components of the system. [3] [4]

Main Controller:
PSoC 6

2x Core CM4/CM0+
@150MHz/100MHz

512KB Flash
256KB SRAM

Safety Switch Driver
2ED4820-EM:

Precharge Path
Main Path

Ext. Diagnostic
Safe State Pin

Error Interrupt Pin

CAN-FD
Transceiver

TLE9351BVSJ

Analog Frontend
TLE9012:

System voltage 16bit
Cell voltage 16bit

Cell balancing 100mA
6x Temperature 10 bit

Error Interrupt Pin
Cell Diagnostic
Ext. Diagnostic

User Interface
E2200CS021:
200 x 96 pixel
E-Ink Display

3 x Button
4 x LED on Top

1 x LED at Display

F-RAM Memory
CY15B256Q:

256 kBitExternal ADC
MCP3465:
2CH 16bit

System Current
Load Voltage

SPI1UART

SPI2 /
GPIO

SPI1

SPI1

CAN

Interrupt Interrupt

Load
Voltage
Divider

Safe State
Enable

Emergency OFF

 ... Digital Interface

 ... GPIO

 ... Analog Signal

Current
Sensor
TLI4971

Safe State

Fig. 1. Each block represents a hardware peripheral, its tasks and most
important capabilities. The connections between blocks show the commu-
nication/signal type. [3] [4]

Current
Sensor

Safety
Switch

PRECHARGE

Analog
Frontend

Balancing
Circuit

Load

Load
Connector
Voltage

Fig. 2. The simplified schematic of the system shows how the main
components are connected [3]

The most important parts are the analog frontend and the
safety switch driver. The analog frontend TLE9012 is used
for monitoring, balancing and diagnostic of the cells. It is

connected to the battery main terminals as well as all tabs
between the series cells. The safety switch driver 2ED4820
incorporates many features that are designed to increase per-
formance and keep the system safe and expandable. To control
the connection of the battery to the load and allow recharging,
an intelligent switch driver with vast safety and diagnostic
functionality is used. Both components provide interrupt pins
to detect errors and enter a safe state without using the digital
bus. [3] [4]

B. Preceding project

Prior to the development of this system, a project to develop
a wireless BMS concept demonstrator (BMS via Radio [5]
[6]) was realized and basic BMS features were implemented.
Additionally, a simple Coloumb-Counting-based battery state
estimation library was developed [7]. Parts of this project are
used as a starting point for this BMS.

III. OBJECTIVES

The objective of the project is to develop a stable expandable
BMS platform that can later be used for the implementation
of advanced algorithms. To do that, multiple features must be
implemented. For safety reasons, the switch must be deacti-
vated if system parameters like temperature, voltage or current
are outside defined thresholds. For this purpose, a diagnostic
system is needed which also performs logical, peripheral and
processing error checks. The soft switch-on of capacitive
loads must be controlled by a precharge mechanism. To allow
multiple systems to switch the supply between each other,
a hot-swap scheme is also needed. Communication between
the systems and the load/charger shall be implemented on
the CAN messaging protocol. Runtime data storage must be
implemented to provide training data for later implementation
of AI-based algorithms. Also, a simple but suitable balancing
and battery state algorithm must be implemented to provide
all basic BMS functionality. For user interaction, a simple user
interface incorporating a display, buttons and LEDs is needed.

IV. CONCEPT

A. Design Principles

During the implementation of the main loop, three key
design principles are followed:

Non-blocking Software Design: The main loop is engi-
neered to prevent any form of blocking. Using state machines,
actions proceed at full speed until they need to pause, at
which point they change states rather than waiting idly. When
the action that triggered the wait is finished (e.g. peripheral
ready), the action resumes and transitions to the next state.
This ensures that critical tasks are executed with minimal
delay.

Event-driven Execution: Non-critical actions within the loop
are executed at specific intervals or as a result of other actions.
This allows actions that do not require continuous operation,
such as UI updates or communication routines, to run only
when it is necessary. Dependencies between actions (e.g. one
action requiring fresh data from another) are managed through

flags that signal when new data is available, ensuring the
system is reactive to changes and conserving computational
resources by avoiding redundant calculations.

Timeout Protection: To guarantee reliability and safety,
critical operations are always guarded by timeouts. If a task
exceeds its expected duration, the timeout triggers, reverting
to a previous state and attempting the operation again. This
mechanism prevents prolonged system hang-ups due to stalled
tasks, such as delayed responses from hardware components,
thereby maintaining system integrity.

process
Measurement

manage
SlotState

manage
Balancing

doSystem
Diagnostic

manageSystem
AndSwitchState

manageExternal
Communication

manage
AnalogFrontend

manage
BatteryState

manage
Shutdown

updatePublic
DisplayData

refreshSystem
Watchdogs

INITIALIZATION

Update measured system values from analog frontend IC
and ADCs

Determine in which slot the system is inserted

Determine if and which cells need to be balanced

Refresh errors and warnings from safety switch,
analog frontend and rest of system

Determine main state of the BMS and set safety
switch accordingly, including Hotswap

Manage data from and to the BMS (CAN, debug, etc).
Resets related latched bitmaps

Manage the queuing and interpreter system of the
analog frontend

Manage the calculation of SoC/SoH battery
monitoring

Detect shutdown conditions and control shutdown
sequence if needed

Update the data that is stored in public RAM. Used to
show them on the display by the second core

Send a signal to the system watchdog that the
main loop is still running

START

manageMemory Check if status or RT data recording must be updated

Watchdog
Interrupt

Detect System
Faults and Kill

System

Fig. 3. Detailed main loop flowchart.

B. Main Loop and System Watchdogs

The system’s microprocessor contains two cores: the first
core is dedicated to the BMS functionalities including per-
forming measurements, executing diagnostics, determining

system state, controlling switches, and carrying out house-
keeping tasks (as depicted in figure 3). The second core is
allocated for managing the user interface, which operates at a
slower rate. Detailed explanations of some key functions are
given in the next passages.

For fault, 2 types of watchdogs are implemented: a software
watchdog with a short interval and a hardware watchdog with
a long interval. The software watchdog is designed for soft
system shutdowns when the shutdown button is pressed for an
extended time or if a hot-swap takes too long. It can also force
a hard shutdown if the main loop becomes unresponsive. The
hardware watchdog, embedded in the microcontroller hard-
ware, performs a hard reset of the system if it got triggered.
This provides a fail-safe even when the system’s cores are non-
operational. Both watchdogs require regular ’kicking’ within
their intervals to prevent triggering a shutdown or reset. [8]

C. Analog Frontend Interfacing

The Analog Frontend Library is engineered to enhance
system performance, maintain safety and allow for scalability
through a half-duplex communication protocol that supports
daisy-chaining of devices. It distinguishes between internal
and externally-triggered measurements, using CRC-protected
frame layouts for reliable communication, and offering op-
timization features like multi-read for commonly accessed
registers. The library manages over 180 diverse fields for
system functions. [9] [10]

In order to comply with the design principles in section
IV-A, the library provides a non-blocking interface composed
of three main elements: commands, queuing and an interpreter
(see figure 4). Commands, which can be executed repeatedly
throughout system operation, prepare and queue actions. The
queuing system processes these sequentially to comply with
the half-duplex nature, preventing simultaneous data transmis-
sion and reception. The interpreter monitors and processes
complete data packets on the bus.

Main Loop

Request registers and process data:
 - Any register that needs to be read or
 written is queued. Once result is ready
 it can be processed and queued again.
 - Example:
 - If register is not queued (bit is 0)
 - If register has no error (bit is 0)
 - Process result
 - Request next register read/write

Execute Queue Management:
 - Must run every loop and controls the
 queue system and data transmit (TX)
 to the IC.

Execute Interpreter Management:
 - Must run every loop and processes
 the data received (RX) from the IC

Analog Frontend Library

Interface

Commands:
 - R/W Command:
 - Determine command result
 - If not queued already, store
 as new queue item
 - Set register queued
 - Information Request:
 - Return register data

Queue:
 - Transmit Q Item (TX) bytes
 - Set register not ready
 - Wait till register ready
 (interpreter received result)
 → Repeat for next Q item ...

Interpreter:
 - Interpret buffer data until
 RX Pos is reached
 - Store data based on content
 - Set register ready and
 set error if any occurred

Queue

Q
Item

Node
ID RW Reg

ID Data State

1. 1 R 1 0xFFFF TX

2.
...

Register State Bitmaps

1 | | 0

 | 0 | 1

 | | 0

Reg0Reg1...

Queued

Ready

Error

Receive Buffer

On RX Interrupt:
 - Store (RX) bytes in FIFO ring buffer

RX PosInterpreter Pos

...

(TX) bytes
(RX) bytes

half-duplex UART

Fig. 4. Overview of the analog frontend library.

START

Is at least the
minimal package size

in RX buffer?

yes

no

Compares first byte
 to the SYNC frame?

no

yes Does second
byte indicate a read

package?

no

yes Is at least the
minimal read package

size in RX buffer
?

no

yes Does the CRC
match for the assumed

package?

no

yes

Does the CRC
match for the assumed

package?

no

yes

Set interpreter state:
ParseReadReturn

Discard package

Interpret data
package

Discard package

Set interpreter state:
ParseFailed

Is interpreter state:
ParseReadReturn?

no

yes Is at least the
min. read return package

size in RX buffer
?

no

yes

Is interpreter state:
ParseFailed?

no

yes Discard first byte in
RX buffer

Is at least the
minimal write package

size in RX buffer
?

no

yes Does the CRC
match for the assumed

package?

no

yes Interpret data
and reply frame

Discard package

Set interpreter state:
ParseFailed

Assume write
package

Set interpreter state:
ParseFailed

END

Execution Path
Direct Path to End
While Loop Path

Fig. 5. Flowchart of the interpreter system implemented by the library.

START

Reinitialize Analog
Frontend if entered

sleep mode

Is current
Queue item state:

WaitForRx

no

yes

Is register
marked ready?

no

yes

Mark register as
not queued

Is timeout exceeded?

no

yes

Mark register as
not queued,

ready and error

Is current
Queue item state:
WaitForNextItem

no

yes
Is a new queue item

received?

no

yes

Move queue index
to next item

Is current
Queue item state:

ExecuteTx

no

yes

Must the keep alive
command be send

yes

no

Send keep alive

Send request to
Analog Frontend

Mark register as
not ready

Change queue item
state to:
WaitForRx

END

Is another item in the
queue?

yes

no

Set Queue item
state:

WaitForNextItem

Fig. 6. Flowchart of the queuing system implemented by the library.

These components operate autonomously and communicate
through register state bitmaps that indicate queue status, errors
and readiness. Commands compose the read/write register
operations, verifying register availability before queuing and
handling errors. Results of operations are stored in shadow
registers, with specialized functions translating the raw data
into usable formats.

The queuing system (figure 6) ensures orderly data flow,
alternating between transmission execution (ExecuteTx) and
waiting for reception (WaitForRx). It can be timed out if
necessary. If all queue items are finished, the queue moves
to a waiting state (WaitForNextItem).

The interpreter is tailored to handle variable-sized communi-
cation packets, identifying expected sizes from the initial bytes
and using CRC validation for integrity. Communication starts
with a consistent SYNC byte and an ID byte that distinguishes
the node and read/write type, followed by an ADDRESS byte
indicating the target register. Write operations follow with
DATA and CRC bytes, while read operations finish directly
with a CRC byte, to which the IC responds with ID, DATA
and CRC bytes. For multi-read operations, configuration at
startup is essential to define the expected packet size for each
register requested. [9] [10]

D. Measurement

The main loop cycle initiates with a measurement phase,
reading amongst others cell and battery voltages via the analog
frontend and current/load voltages through an external ADC.
The analog frontend measurements are periodic and current
measurements are synchronized with these triggers. This is
shown in figure 7 and 8;

Analog Frontend Statemachine
Wait Result

Is Measurement
Control data read?

Is Measurement
finished flag set?

Read Measurement
Control again

Write Balancing
Bitmap

yes

yes

no no

START

END
Keep State

Read Measurement
Results

Read Result

Is Measurement
Result data read? Convert Result

yes

no

START

END
Keep State

Trigger Next

Is Measurement
interval time
exceeded? yes

Trigger next
Measurement

(Voltage & Current)

no

START

END
Keep State

Execution Path
State Transition

Fig. 7. Flow/Statechart of the analog frontend measurement.

Upon triggering the analog frontend measurement, the state
machine enters the WaitResult state, doing nothing until the
measurement completes. Subsequently, a multi-read of es-
sential registers is queued, transitioning the system into the
ReadResult state, where it waits for the multi-read completion.
After processing and storing the results, the system writes
the balancing bitmap, derived from an algorithm. This is
needed here because any measurement stops the balancing.

It must be re-enabled at the earliest possible point to keep the
balancing efficiency high. The cycle concludes by returning to
TriggerNext, waiting out the remainder of the interval before
recommencing.

Execution Path
State Transition

External ADC Statemachine
Wait Trigger

Is
Analog Frontend

Trigger set?

no

Trigger Current
Measurementyes

END
Keep State

START

Wait Current Ready

Is Current
Measurement

ready?

no

END
Keep State

START

Is Offset
Calibration

ongoing

Calculate
Current Offset

Convert and Filter
result

no

yes

Wait Load Voltage Ready

Is Load Voltage
Measurement

ready? yes

Convert and
Filter result

no

START

END
Keep State

yes

Fig. 8. Flow/Statechart of the external ADC measurement, used for current
and load voltage.

Simultaneously, the external ADC triggers its current mea-
surement process before entering the WaitCurrentReady state.
Here, the ADC data is continuously polled until it is ready
for use. During the initial setup, the current offset is also
computed at this stage. The value is then converted, filtered
and the system proceeds to the WaitLoadVoltageReady state,
adopting an analogous approach for load voltage readings.

E. Diagnostic

The diagnostic system depicted in figure 9 is engineered to
identify, log and manage errors, thereby defining the decision
base for system state assessment and switch control. It continu-
ously cycles through requesting, evaluating and clearing debug
registers across all peripheral ICs using state machines. Errors
and warnings are consolidated into bitmaps for streamlined
communication and application. [1]

Diagnostic operations involve monitoring three primary
error sources: safety switch driver registers, analog frontend
registers and internal system checks. Each cycle involves
refreshing these sources to capture the latest statuses. The
associated errors are cleared from and, if detected again,
reinstated in the error bitmap. Errors on the ICs are reset
automatically where feasible.

The error bitmap is latched to preserve errors across cycles,
ensuring they are retained for subsequent actions, such as
external communication. Any detected errors trigger a BMS
ERROR status, leading to the deactivation of the safety switch.
Direct fault interrupts from peripheral ICs immediately initiate
a safe state and deactivate outputs. Conversely, if no errors are
found, the safe state is released.

Finally, the system’s red LED behavior is determined: it
remains on while errors exist and turns off when cleared. The
LED serves as an immediate error indicator, while latched
errors are displayed until reset, ensuring transient errors are
logged even if the LED is no longer lit. If there are no errors
and the State of Charge (SoC) drops below a critical level, the
LED blinks.

no

Internal Diagnostic

Analog Frontend Diagnostic

Safety Switch Diagnostic

Safety Switch
Error Interrupt

Analog Frontend
Error Interrupt

Errors Bitmap 0
and Interrupt Pins

inactive?

Emergency OFF
(Safe State Pin High)

Clear Error Bits
(latched)

Read Error
Registers Set Errors Bits Reset Error

Registers

Clear
Status ERROR if

not already cleared

Set BMS Status:
ERROR

yes

no

yes

No Errors but
red LED still on?

Is Battery Low?

Disable red LED

Blink red LED

Latch Errors for
Display &

Communication

Enable red LED

yes

START

END

no

0 1Error Bitmap:

Under
Voltage

Over
Voltage

0 1

Over
Temp

Over
Current

...

Execution Path

Write to Object

Fig. 9. The overview of the diagnostic concept.

F. System, Switch and Hot-Swap Control

The system must determine its operational state based on
diagnostic outcomes and manage the safety switch (see figure
10). When detecting an ERROR state, it deactivates the switch
and resets relevant components. If there are no errors, the BMS
transitions its state to either DISCHARGING or CHARGING,
depending on the detected circumstances. It then evaluates
conditions for a potential hot-swap, which may also induce
a system shutdown if the swap fails or concludes.

The key process during normal operation is the BMS Role
state machine, determining the responsibilities of the BMS
as either the primary power provider (MAIN BMS) or a
participant in the hot-swap process (GIVER BMS or TAKER
BMS). The coherences of the roles are provided in figure 11.
Initially, the first BMS assumes the MAIN role, while the
subsequent BMS takes on the TAKER role, remaining idle
until a handover is initiated. The MAIN BMS controls the soft
power of the switch by utilizing the precharge channel with
a supplementary state machine. This switch-on state machine
tracks the conditions for the switch-on and starts the precharge
if needed. Once started, the full switch-on will commence after
certain conditions are reached. Here, a minimal and maximal
time sets up a boundary in which the change rate of the load
voltage is traced to find the best switch on point.

If a swap is justified, The MAIN BMS transitions to the
GIVER role, beginning a CAN communication handshake to
transfer power supply responsibilities to the TAKER. During
the hot-swap, the GIVER first confirms the TAKER’s presence
and prompts the load to reduce power demand to protect the

hardware. Subsequently, the GIVER instructs the TAKER to
activate its precharge path, which mitigates high compensation
currents that could otherwise trigger safety features or cause
damage (swap phase). The finish phase, triggered by the
TAKER makes the GIVER power down its paths, signals
completion to the TAKER, and shuts down. The TAKER then
fully engages its main path, notifying the load that power
restrictions can be lifted, and adopts the MAIN role.

yes no

Is BMS State
ERROR?

Set Switch State
IDLE

BMS Role Statemachine

MAIN BMS

GIVER BMS TAKER BMS

BMS 1

BMS 2

START

Orange LED
Control

END

Disable
Safety Switch

Set BMS State
DISCHARGING or
CHARGING based

on Slot State

Check HotSwap
State and manage

Give-Over
Shutdown

Fig. 10. Simplified flowchart of system and switch control.

Throughout the hot-swap process, timeouts are continuously
monitored. If a timeout occurs, both the GIVER and TAKER
will shut down to ensure system safety.

G. Data Recording

The F-RAM memory in the system is separated into two
segments as can be seen in figure 12. The first segment
records system status data such as the BMS’s last State of
Charge (SoC) and State of Health (SoH), updating only when
new values diverge from those already stored. The second
segment is allocated for real-time (RT) data accumulation
during system operation.

Data selection for recording is tailored to parameters typi-
cally used in training AI algorithms for battery state prediction
[11], emphasizing compactness by storing values in groups
of two little-endian formatted fixed-point bytes. To achieve
resource-efficient storage, only the interval between data points
is recorded, which also serves to indicate recording stops when
set to zero.

Current levels are not stored directly. Instead, the change in
charge between data points is used, with the current calculable
by dividing this charge difference by the corresponding time
interval. A mechanism compensates for charge loss during the
conversion from floating to fixed-point, ensuring overall charge
accuracy over time upon data evaluation.

MAIN BMS

yes

no

Is Give-Over
Condition set?

Switch ON Statemachine

Switch ON
Conditions

met

IDLE

Switched
ON

PRECHARGE

START

END
Keep State

BMS 1

Execution Path
State Transition
CAN Communication

TAKER BMS

H
an

ds
ha

ke
 P

ha
se

Send Handshake
Command

START

Handshake
received?

END
Keep State

Sw
ap

 P
ha

se

START

Turn Precharge
Path ON

Swap
received?

END
Keep State

Send Swap
Command

END
Keep State

Send Handshake
Command

START

Handshake
received?

Send Reduce
Power Command to

System

Send Swap
Command

START

Swap
received?

END
Keep State

Fi
ni

sh
 P

ha
se

START

Turn Main
Path ON

Finish
received?

END
Keep State

Send Enable Power
Command to

System

Turn Precharge and
Main Path OFF

Send Finish
Command

START

END
Keep State Shutdown

no

yes

GIVER BMS

no

yes

yes

no

yes

no

no

yes

BMS 2

Fig. 11. Overview of the BMS Roles and how they change and interact with
each other throughout the hot-swap phases.

START

END

Is
system data

record interval time
exceeded? yes

no

Store SoC in
Memory

Does SoC
differ from

stored SoC? yes

no

Store SoH in
Memory

Does SoH
differ from

stored SoH? yes

no

Is
RT data

record interval time
exceeded? yes

no

Calculate and limit
RT data record

interval time

Read address
where line must be

stored

Is
address plausible?

yes

no

Calculate time and
capacity difference
since last data point

Convert data to
fixed point logic

Store data line in
memory

Write address
where the next line

must be stored

Fig. 12. Flowchart of the data recording of system status and the real-time
data. Both mechanisms act at different intervals.

Temperature readings use the average from sensors near the
cells, while block voltage and imbalance figures are stored
outright, totaling 10 bytes needed per record.

Recording RT data optimally involves capturing a complete
battery cycle before the storage is full. The load conditions
dictate the minimal sampling rate required: high current draws
need shorter sampling intervals, whereas lower loads permit
extended intervals. A dynamic sampling time estimation ad-
justs the sampling rate in real time, calculating it based on
the predicted system runtime and remaining storage capacity
to ensure a full cycle is documented, regardless of load
variability.

H. CAN Communication Interface

The system communicates via CAN messages, allowing the
exchange of status information, requests, and commands. To
prevent message blockages due to bus errors, a re-initialization
process is triggered by specific errors.

To ensure moderate bus usage, a minimum interval between
outgoing messages is enforced, with status information and re-
quests processed exclusively by the MAIN BMS. Additionally,
CAN messages are employed during the hot-swap process, in
the roles of either GIVER or TAKER.

START

Is
minimal CAN

message time
exceeded? yes

no

Is BMS Role MAIN?
yes

no

Is switch on veto
time exceeded?

no

yes

Is a CAN request
received? no

yes

Is the CAN
data refresh interval

 time exceeded? no

yes

Send switch on
veto message

Reset RT data
requested?

yes

no

Get RT data line
requested?

yes

no

Get RT data stored
lines requested?yes

no

Get max RT data
line requested?yes

no

Reset current RT
data line number to

0

Send requested RT
data line in 2 parts
as CAN message

Send latest stored
line number CAN

message

Send highest
possible line
number CAN

message

Send SoC, Voltage
and Current CAN

message

Turn on/off blue led
if communication

successful

END

Fig. 13. Flowchart of the communication via CAN messages in BMS role
MAIN. Only here, requests and continuous status updates are processed.

When conditions permit message transmission, three types
of messages, as depicted in figure 13 are prioritized:
SwitchOnVeto Messages from the MAIN BMS, responses
to incoming requests and system status data sending. The

SwitchOnVeto Message has the highest priority, signaling
other BMS units that a MAIN BMS is providing the load
power and that no other must switch on. This is sent reg-
ularly. During the intervals, the system addresses responses
to requests, followed by status data if no other message type
needs to be done earlier.

Request responses reply to the requested data with the
same command ID, usually without needing parameters. An
exception to this is the RT Data GetLines command, which
specifies StartIndex and StopIndex in two-byte increments.
After validation, the requested data lines are transmitted, and
split into two parts due to CAN message size constraints.

V. RESULTS

To verify the system requirements, a series of tests and
recordings are performed. [8] Recorded real-time data is
visualized with the balancing target shown as a black line on
the imbalance plot (relevant only in charge mode).

A. Over-Temperature Test

Discharging a full system on a constant load of 5A triggers
the over-temperature error at 60 °C after 32min.

B. Voltage Limit Test

To assess the over/under-voltage error detection, the system
is powered by a variable voltage supply in/decreasing the
voltage until the threshold is exceeded. Both over and under-
voltage errors triggered as expected.

C. Current Limit Test

Equipped with cells and connected to a digital variable load,
the system’s target current is manually increased until an over-
current error is triggered at 5.9A (figure 14), reducing the
current to the BMS draw.

Fig. 14. A discharge cycle where the current is increased from 0A to 7A
until an over-current error is triggered. Each measurement point is marked to
visualize the increase in the sampling rate with the rising current.

D. Battery Cycle Test

As a simple test, a charge and discharge cycle is recorded.
The data coherence between tests is evaluated to be good,
though precise hardware benchmarks and battery process
evaluations were not performed. The charge test (figure 15)
showed an imbalance reduction through balancing systems,
while the discharge test (figure 17 and 16) highlighted voltage
drops and rising temperatures.

Fig. 15. A charge cycle where 3104mAh are loaded into the battery in
142min with a maximum charge current of 1.7A.

Fig. 16. A discharge cycle where 3103mAh are taken from the battery
in 110min. The load is set up to simulate a constant resistance of 26.6Ω.
Therefore, the current drops with the voltage.

Fig. 17. A discharge cycle where 3103mAh are taken from the battery in
173min. The load is set up to keep the current constant at 1A.

E. Precharge Evaluation

To test the precharge, the switch-on of a capacitive load
is examined. The voltage change rate is set to the detectable
minimum at 0.01V/ms. In multiple tests, the minimal usable
precharge time to not trigger any safety mechanisms is found
and compared to the said rate. The initial current peak and the
oscillations after switch-on are reduced greatly (figure 18).

Fig. 18. Switch-on of a load with 915 µF and 330Ω where current (solid line)
and voltage (dashed) is measured. Plot (a) uses the minimal precharge time
where switch-on is possible. Plot (b) shows the switch-on using the minimal
detectable voltage change rate of the system.

F. Software Review

The software is designed to be fast, safe, reliable, extensible
and maintainable. Speed is improved through a set of design
principles and loop strategies. Safety is ensured by utilizing
hardware capabilities and watchdogs. Extensibility is achieved
by separating functional parts into dedicated files. Code main-
tainability is enhanced by centralizing settings and constants,

and thorough documentation. The cycle time is measured to
be around 1 to 2ms.

VI. CONCLUSION

Presented is a comprehensive design, implementation and
evaluation of a battery management system (BMS) in C, aim-
ing to enhance robustness and functionality through a modular
approach utilizing embedded software engineering principles.
The implementation focuses on the system design, integration
of multiple safety features, hot-swap capability, CAN-based
communication interface and runtime data storage, which
ensure reliability and safety. The evaluation chapter presents
performance measurements and testing results, demonstrating
the effectiveness of the implemented concepts. The work
successfully develops a robust BMS platform for future eval-
uations of advanced battery management algorithms.

REFERENCES

[1] S.Yang, X.Liu, S.Li, and C.Zhang, “Advanced Battery Management
System for Electric Vehicles,” Springer, 1 2023. [Online]. Available:
https://link.springer.com/book/10.1007/978-981-19-3490-2

[2] H.Gabbar, A.Othman, and M.Abdussami, “Review of Battery Manage-
ment Systems (BMS) Development and Industrial Standards,” Tech-
nologies, vol. 9, no. 2, pp. 1–23, 2021. [Online]. Available: https:
//doi.org/10.3390/technologies9020028

[3] Infineon Technologies, “Infineon Mobile Robot (IMR) battery
management system power,” 04/2024. [Online]. Available:
www.infineon.com/dgdl/Infineon-UG092042 mobile Robot IMR
battery management system power using DEMO IMR BMSPWR
V1-UserManual-v01 00-EN.pdf

[4] Infineon Technologies, “Infineon Mobile Robot (IMR) battery
management system control,” 04/2024. [Online]. Available:
www.infineon.com/dgdl/Infineon-UG091835 mobile robot IMR
battery management control using DEMO IMR BMSCTRL
V1-UserManual-v02 00-EN.pdf

[5] R. Santeler, M. Schmidt, P. Temsamani, “BMS via Radio - Documen-
tation,” MCI EAL in cooperation with Infineon AG, 2023.

[6] P.Temsamani, “Battery management via radio,” 2022.
[7] O.Demirci, S.Taskin, E.Schaltz, and B. A.Demirci, “Review of battery

state estimation methods for electric vehicles - Part I: SOC estima-
tion,”Journal of energy storage, vol. 87, p. 111435, 2024. [Online].
Available: https://doi.org/10.1016/j.est.2024.111435

[8] A. S.Berger, “Embedded Systems Design: An Introduction to Processes,
Tools and Techniques,” CMP Books, 2001.

[9] Infineon Technologies, “TLE9012DQU Li-ion battery monitoring and
balancing IC,” 01/2022. [Online]. Available: www.infineon.com/dgdl/
Infineon-TLE9012DQU-DataSheet-v01 00-EN.pdf

[10] Infineon Technologies, “TLE9012DQU, TLE9015DQU,”
01/2022. [Online]. Available: www.infineon.com/dgdl/
Infineon-Infineon-TLE9012DQU TLE9015DQU-UM-v01
00-EN-UserManual-v01 00-EN.pdf

[11] E.Chemali, P. J.Kollmeyer, M.Preindl, and A.Emadi, “State-of-charge
estimation of Li-ion batteries using deep neural networks: A machine
learning approach,” Journal of power sources, vol. 400, pp. 242–255,
2018. [Online]. Available: https://doi.org/10.1016/j.jpowsour.2018.06.
104

Rene Santeler is a full system developer with a
focus on embedded software development. After a
decade-long career in IT, he studied mechatronics
at the MCI where he also worked as part of the
Emerging Applications Laboratory team in cooper-
ation with Infineon.

https://link.springer.com/book/10.1007/978-981-19-3490-2
https://doi.org/10.3390/technologies9020028
https://doi.org/10.3390/technologies9020028
www.infineon.com/dgdl/Infineon-UG092042_mobile_Robot_IMR_battery_management_system_power_using_DEMO_IMR_BMSPWR_V1-UserManual-v01_00-EN.pdf?fileId=8ac78c8c8e7ead30018ec1438dbc76e3
www.infineon.com/dgdl/Infineon-UG092042_mobile_Robot_IMR_battery_management_system_power_using_DEMO_IMR_BMSPWR_V1-UserManual-v01_00-EN.pdf?fileId=8ac78c8c8e7ead30018ec1438dbc76e3
www.infineon.com/dgdl/Infineon-UG092042_mobile_Robot_IMR_battery_management_system_power_using_DEMO_IMR_BMSPWR_V1-UserManual-v01_00-EN.pdf?fileId=8ac78c8c8e7ead30018ec1438dbc76e3
www.infineon.com/dgdl/Infineon-UG091835_mobile_robot_IMR_battery_management_control_using_DEMO_IMR_BMSCTRL_V1-UserManual-v02_00-EN.pdf?fileId=8ac78c8c8e7ead30018ec143879376df
www.infineon.com/dgdl/Infineon-UG091835_mobile_robot_IMR_battery_management_control_using_DEMO_IMR_BMSCTRL_V1-UserManual-v02_00-EN.pdf?fileId=8ac78c8c8e7ead30018ec143879376df
www.infineon.com/dgdl/Infineon-UG091835_mobile_robot_IMR_battery_management_control_using_DEMO_IMR_BMSCTRL_V1-UserManual-v02_00-EN.pdf?fileId=8ac78c8c8e7ead30018ec143879376df
https://doi.org/10.1016/j.est.2024.111435
www.infineon.com/dgdl/Infineon-TLE9012DQU-DataSheet-v01_00-EN.pdf?fileId=8ac78c8c7e7124d1017f0c3d27c75737
www.infineon.com/dgdl/Infineon-TLE9012DQU-DataSheet-v01_00-EN.pdf?fileId=8ac78c8c7e7124d1017f0c3d27c75737
www.infineon.com/dgdl/Infineon-Infineon-TLE9012DQU_TLE9015DQU-UM-v01_00-EN-UserManual-v01_00-EN.pdf?fileId=8ac78c8c7e7124d1017f0c4f8750574b&da=t
www.infineon.com/dgdl/Infineon-Infineon-TLE9012DQU_TLE9015DQU-UM-v01_00-EN-UserManual-v01_00-EN.pdf?fileId=8ac78c8c7e7124d1017f0c4f8750574b&da=t
www.infineon.com/dgdl/Infineon-Infineon-TLE9012DQU_TLE9015DQU-UM-v01_00-EN-UserManual-v01_00-EN.pdf?fileId=8ac78c8c7e7124d1017f0c4f8750574b&da=t
https://doi.org/10.1016/j.jpowsour.2018.06.104
https://doi.org/10.1016/j.jpowsour.2018.06.104

	Introduction
	Previous Work
	Hardware
	Preceding project

	Objectives
	Concept
	Design Principles
	Main Loop and System Watchdogs
	Analog Frontend Interfacing
	Measurement
	Diagnostic
	System, Switch and Hot-Swap Control
	Data Recording
	CAN Communication Interface

	Results
	Over-Temperature Test
	Voltage Limit Test
	Current Limit Test
	Battery Cycle Test
	Precharge Evaluation
	Software Review

	Conclusion
	References
	Biographies
	Rene Santeler

